A predictive model for cerebrovascular disease using data mining
نویسندگان
چکیده
Cerebrovascular disease has been ranked the second or third of top 10 death causes in Taiwan and has caused about 13,000 people death every year since 1986. Once cerebrovascular disease occurs, it not only leads to huge cost of medical care, but even death. All developed countries in the world put cerebrovascular disease prevention and treatment in high priority, and invested considerable budget and human resource in long-term studies, in order to reduce the heavy burden. As the pathogenesis of cerebrovascular disease is complex and variable, it is hard to make accurate diagnosis in advance. However, in perspective of preventive medicine, it is necessary to build a predictive model to enhance the accurate diagnosis of cerebrovascular disease. Therefore, coupled with the 2007 cerebrovascular disease prevention and treatment program of a regional teaching hospital in Taiwan, this study aimed to apply the classification technology to construct an optimum cerebrovascular disease predictive model. From this predictive model, cerebrovascular disease classification rules were extracted and used to improve the diagnosis and prediction of cerebrovascular disease. This study acquired 493 valid samples from this cerebrovascular disease prevention and treatment program, and adopted three classification algorithms, decision tree, Bayesian classifier and back propagation neural network, to construct classification models, respectively. After analyzing and comparing classification efficiencies – sensitivity and accuracy, the decision tree constructed model was chosen as the optimum predictive model for cerebrovascular disease. In this model, the sensitivity and accuracy were 99.48% and 99.59%, respectively, and eight important influence factors of predicting cerebrovascular disease and 16 diagnosis classification rules were extracted. Five experienced cerebrovascular doctors assessed these rules, and confirmed them to be useful to the current clinical medical condition. 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملPredicting Bankruptcy of Companies using Data Mining Models and Comparing the Results with Z Altman Model
One of the issues helping make investment decisions is appropriate tools and models to evaluate financial situation 0f the organization. By means of these tools, investors can analyze financial situation of the organization and identify financial distress or an ideal condition, they become aware of making decisions to invest in appropriate conditions. The main objective of this study is to ev...
متن کاملProvide a Predictive Model to Identify People with Diabetes Using the Decision Tree
Background: Today, in most hospitals in Iran, there is an extensive database of patient characteristics that includes a large amount of information related to medical, family and medical records. Finding a knowledge model of this information can help to predict the performance of the medical system and improve educational processes. Methods: Data mining techniques are analytical tools that are...
متن کاملPredicting the Risk of Osteoporosis Using Decision Tree and Neural Network
Introduction: Osteoporosis is one of the major causes of disability and death in elderly people. The objective of this study was to determine the factors affecting the incidence of osteoporosis and provide a predictive model to accelerate diagnosis and reduce costs. Method: In this fundamental descriptive study, a new model was proposed to identify the factors affecting osteoporosis. Data relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 38 شماره
صفحات -
تاریخ انتشار 2011